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Motivation Method

Resolve gradient conflicts among classifiers

Encourage collaboration of classifiers

Results
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Inline Subnetwork Collaboration (ISC)

• Prediction of previous stage serves as a

prior to facilitate learning of classifiers.

One-for-all Knowledge Distillation (OFA)

• The last classifier serves as a teacher

model whose knowledge could be distilled

into earlier exits.

Gradient Equilibrium (GE)

• Rescale the magnitude of gradients

along its backward propagation path.
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Budgeted batch classification on ImageNet
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Gradient Equilibrium
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Inline Subnetwork Collaboration
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One-for-All Knowledge Distillation

PyTorch Implementation: https://github.com/kalviny/IMTA

Links

Ablation Studies

Training adaptive inference networks

effectively is difficult:

• How to resolve the conflicts among

classifiers

• How to encourage the collaboration of

classifiers

[1] Huang et al., Multi-scale dense networks for resource 

efficient image classification. ICLR 2018 

Adaptive Inference

• Adjust the network structure dynamically 

based on inputs

• Improve computational efficiency at  test 

time

• Use small models for “easy” inputs while

big models for “hard” inputs
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