

Hao Li*, Tianwen Fu*, Jifeng Dai, Hongsheng Li, Gao Huang, Xizhou Zhu

haoli@link.cuhk.edu.hk, futianwen@ie.cuhk.edu.hk, {daijifeng, zhuwalter}@sensetime.com hsli@ee.cuhk.edu.hk, gaohuang@tsinghua.edu.cn

[paper] https://arxiv.org/abs/2103.14026

code [code] https://github.com/fundamentalvision/AutoLoss-Zero

Experiments

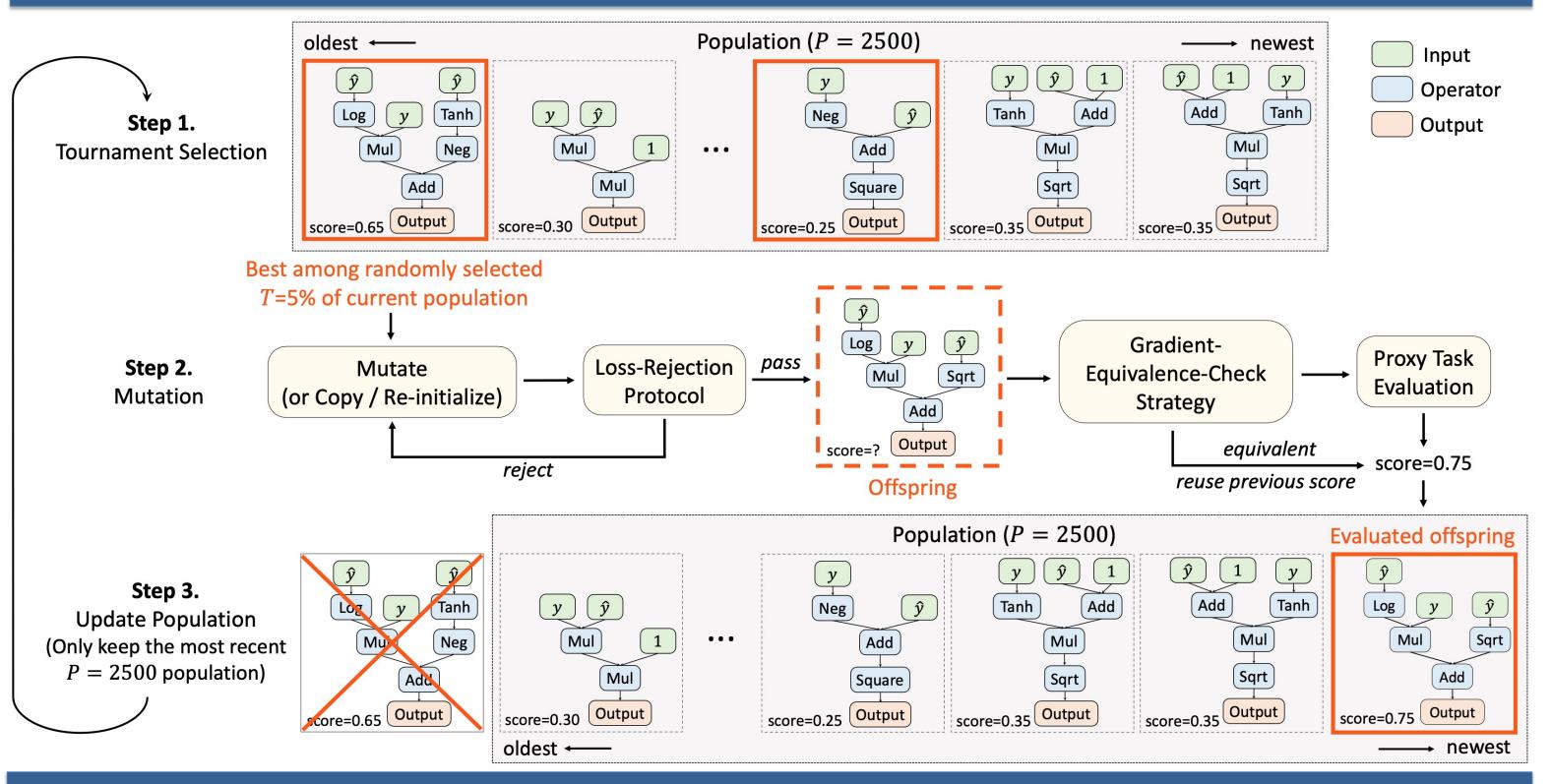
Highlights

- ➤ A general AutoML framework to search loss functions **from scratch for generic tasks** with minimal human expertise.
- Two novel techniques that bring **5000x** improved search efficiency: the Loss-Rejection Protocol and the Gradient-Equivalence-Check Strategy.
- > The searched loss functions are **transferable across different models and datasets** with competitive performance.

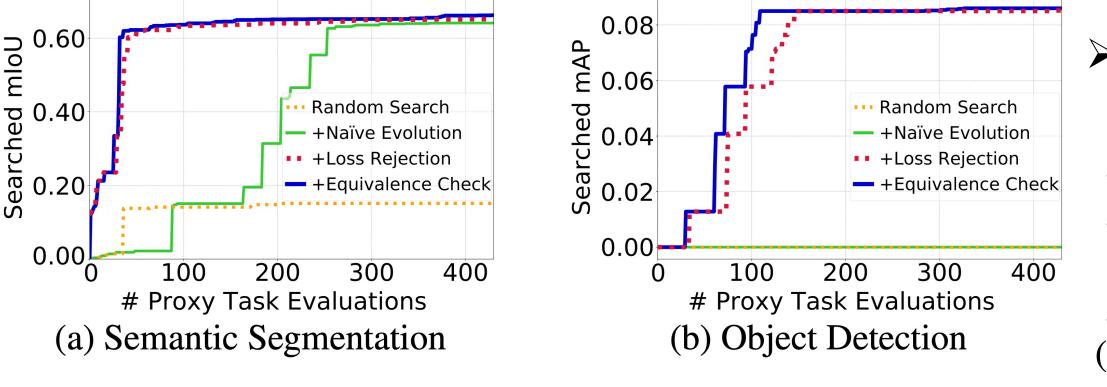
Techniques for Improving Search Efficiency

Loss-Rejection Protocol

Directly optimize randomly initialized network predictions with the candidate loss function (instead of the network parameters), and calculate the improvement on the target metric.


$$g(L;\xi) = \frac{1}{B} \sum_{b=1}^{B} \xi \left(\hat{y}_{b}^{*}(L), y_{b} \right) - \xi \left(\hat{y}_{b}, y_{b} \right),$$
s.t. $\hat{y}_{b}^{*}(L) = \arg\min_{\hat{y}_{b}} L(\hat{y}_{b}, y_{b}),$

> Gradient-Equivalence-Check Strategy


Detect and skip the proxy task evaluation for the candidate loss functions which are equivalent to the previously evaluated loss functions. If two loss functions have the same gradient norms within two significant digits, they are considered equivalent.

$$\{\|\partial L/\partial \hat{y}_b\|_2\}_{b=1}^B$$

Pipeline of the Evolutionary Search

Ablations on Search Efficiency

Speed-Up	# Explored Losses
1×	~300
\sim 700×	$\sim 2.1 \times 10^5$
~1000×	$\sim 3.2 \times 10^5$
~5000×	$\sim 1.5 \times 10^6$
	1× ∼700× ∼1000×

Comparison againstRandom Search

Loss Function	mIoU
Random Search	2.2
Ours	80.7

(a) Semantic Segmentation

Loss Function	mAP
Random Search	0.0
Ours	38.1

(b) Object Detection

> Semantic segmentation results on PASCAL VOC

Los	s Function	FWIoU	gAcc	mAcc	BIoU	mIoU	BF1
Cross Er	ntropy	91.3	95.2	87.3	70.6	78.7	65.3
WCE [5	3]	85.6	91.1	<u>92.6</u>	61.8	69.6	37.6
DiceLos	s [38]	91.3	95.1	87.5	69.9	77.8	64.4
Lovàsz [2]	91.8	95.4	88.6	72.5	<u>79.7</u>	66.7
DPCE [4	!]	91.8	95.5	87.8	<u>71.9</u>	79.8	66.5
SSIM [4	4]	91.7	95.4	87.9	<u>71.5</u>	79.3	<u>66.4</u>
EWIST	ASL [31]	91.9	95.4	89.2	75.1	80.0	65.7
FWIoU	Ours	<u>91.7</u>	95.2	87.7	72.9	78.7	64.6
~ ^ ~ ~	ASL [31]	91.8	95.5	89.0	74.1	79.7	64.4
gAcc	Ours	91.7	<u>95.3</u>	88.7	73.6	79.4	64.8
	ASL [31]	85.9	91.3	92.7	72.9	69.8	35.6
mAcc	Ours	89.2	93.7	<u>92.6</u>	73.7	75.3	44.1
BIoU	ASL [31]	69.9	62.6	81.3	<u>79.2</u>	49.0	39.0
ыоо	Ours	69.5	80.5	67.1	<u>79.3</u>	50.0	34.4
	CSE [37]	91.4	95.2	87.0	72.6	78.1	64.1
mIoU	CSE-RandInit	89.6	93.9	83.1	64.6	<u>71.9</u>	56.5
шос	AML [49]	59.5	64.4	4.9	1.3	<u>4.0</u>	0.4
	ASL [31]	92.1	95.7	88.2	73.4	81.0	68.9
	Ours	92.1	95.7	89.1	74.1	80.7	66.0
BF1	CSE [37]	91.8	95.4	88.5	73.7	79.4	65.1
	CSE-RandInit	69.3	75.6	9.0	3.0	5.3	<u>1.0</u>
	AML [49]	0.5	2.6	4.7	1.7	0.8	<u>1.1</u>
	ASL [31]	1.0	2.7	6.5	7.4	1.9	<u>74.8</u>
	Ours	4.2	9.1	11.9	26.1	7.3	76.7

> COCO detection

	mAP			
Cls _{RPN}	Reg _{RPN}	Cls _{RCNN}	Reg_{RCNN}	
CE	L1	CE	L1	37.3
CE	L1	CE	IoULoss [63]	37.9
CE	L1	CE GIoULoss [52]		37.6
CE	L1	CSE-	38.5	
CE	L1	CSI	0.0	
CE	L1		38.0	
	38.1			

> COCO pose estimation

Loss 1	Function	mA
N	ISE	71.
(Ours	72.

Generalization on different models and datasets

Dataset		Cityscapes		VOC			
Network		R101-DLv3+		R50-DLv3+		R101-PSP	
Loss	Function	mIoU	BF1	mIoU BF1		mIoU	BF1
Cross Entropy		80.0	62.2	76.2	61.8	77.9	64.7
mIoU	ASL [31]	80.7	66.5	<u>78.4</u>	66.9	<u>78.9</u>	65.7
	Ours	<u>80.4</u>	63.8	<u>78.0</u>	62.8	<u>78.5</u>	64.9
BF1	ASL [31]	6.7	<u>78.0</u>	1.4	<u>70.8</u>	1.6	71.8
	Ours	16.0	<u>77.5</u>	10.4	<u>79.2</u>	11.5	76.4

COCO instance segmentation

Loss Function	mAP
CE + L1 + CE + L1 + CE	34.6
CE + L1 + CE + IoULoss [63] + CE	34.4
CE + L1 + CE + GIoULoss [52] + CE	34.7
Ours	34.8